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FOURTH-ORDER NONOSCILLATORY UPWIND AND CENTRAL
SCHEMES FOR HYPERBOLIC CONSERVATION LAWS∗

ÁNGEL BALAGUER† AND CARLOS CONDE‡

Abstract. The aim of this work is to solve hyperbolic conservation laws by means of a finite
volume method for both spatial and time discretization. We extend the ideas developed in [X.-D. Liu
and S. Osher, SIAM J. Numer. Anal., 33 (1996), pp. 760–779; X.-D. Liu and E. Tadmor, Numer.
Math., 79 (1998), pp. 397–425] to fourth-order upwind and central schemes. In order to do this,
once we know the cell-averages of the solution, un

j , in cells Ij at time T = tn, we define a new
three-degree reconstruction polynomial that in each cell, Ij , presents the same shape as the cell-
averages {un

j−1, u
n
j , u

n
j+1}. By combining this reconstruction with the nonoscillatory property and

the maximum principle requirement described in [X.-D. Liu and S. Osher, SIAM J. Numer. Anal.,
33 (1996), pp. 760–779] we obtain a fourth-order scheme that satisfies the total variation bounded
(TVB) property. Extension to systems is carried out by componentwise application of the scalar
framework. Numerical experiments confirm the order of the schemes presented in this paper and
their nonoscillatory behavior in different test problems.
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1. Introduction. In this paper we present three fourth-order numerical schemes
in order to solve one-dimensional hyperbolic conservation laws

∂u

∂t
+

∂f(u)

∂x
= 0, u(x, 0) = u0(x),(1.1)

where u0(x) is a known bounded function.
Many of the high-order methods used to solve this problem employ an interpo-

lating polynomial that reconstructs the pointvalues of the solution in terms of the
cell-averages. There are two main types of schemes: upwind schemes and central
schemes. Godunov-type schemes [7] are the forerunner for upwind schemes, which
compute the cell-averages of the solution in the same spatial cells at all time steps.
Similarly, Van Leer [25] presented a scheme with second-order accuracy in space and
time. Later, Colella and Woodward [5] used two-degree polynomials, although their
scheme satisfies the total variation diminishing (TVD) property, and, hence, it is lim-
ited to second order of accuracy in the L1 norm. Harten et al. [8] introduced the
essentially nonoscillatory (ENO) schemes, with an order of accuracy higher than two
and able to capture sharp shocks without introducing oscillations. Similarly, differ-
ent high-order numerical schemes have been developed, such as the weighted ENO
(WENO) schemes (see Liu, Osher, and Chan [18], Jiang and Shu [10], or Balsara
and Shu [2]). Extensions to multidimensional systems can also be found in Casper
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and Atkins [4] or Balaguer et al. [1]. The schemes found in the latter references
use the high-order Runge–Kutta schemes developed in Shu and Osher [23] for time
integration, which maintain the spatial operator stability properties.

Although the first-order Lax–Friedrich scheme (see [6]) is probably the forerunner
for central schemes, the central scheme of Nessyahu and Tadmor [21] has generated a
significant number of works on high-resolution schemes that maintain the simplicity
of the Riemann solver-free approach. The scheme developed in Nessyahu and Tadmor
[21] has been extended to accuracy orders higher than 2 (see Liu and Tadmor [20],
Jiang et al. [11], or Qiu and Shu [22]) and to several spatial dimensions (see Levy
and Tadmor [15] and Jiang and Tadmor [12]). High-order central WENO schemes are
described in Levy, Puppo, and Russo [16], [17].

We have focused our attention on the upwind scheme developed in Liu and Osher
[19] and the central scheme described in Liu and Tadmor [20], which are third-order
schemes, in the sense of local truncation error in regions without discontinuities. The
algorithm developed in Liu and Osher [19] leads to a conservative scheme that satis-
fies the local maximum principle and guarantees that the number of extrema in the
solution does not exceed the number of extrema of the initial condition u0(x). These
properties allow achieving the total variation bounded (TVB) property. The approach
used in that reference uses a simple centered stencil with quadratic reconstruction.

Liu and Tadmor [20] apply the procedure described in Liu and Osher [19] to cen-
tral schemes and show the results obtained when solving differential equation systems.
The resulting scheme is third-order accurate in space and time. In both references
([19] and [20]), time integration is performed using a finite volume method, approxi-
mating the resulting integrals with respect to time by a Gauss [19] or a Simpson [20]
quadrature rule. The values of the solution at half time steps are approximated using
a Taylor expansion. Jiang et al. [11] present a procedure to convert schemes which
are based on staggered spatial grids into nonstaggered schemes, which are simpler to
implement in frameworks which involve complex geometries and boundary conditions.
However, it has been in some cases superseded by the semidiscrete central schemes
(see Kurganov and Tadmor [13]) and their high-order extensions.

This paper presents an extension of the schemes developed in Liu and Osher
[19] and Liu and Tadmor [20]. In contrast to them, our scheme is a fourth-order
scheme in the sense of local truncation error. To this end, we will use a finite volume
method with a conservative degree-three polynomial reconstruction that calculates
the pointvalues of the solution from the cell-averages, by avoiding the increase in the
number of solution extrema at the interior of each cell. This condition, together with
the nonoscillatory property and the maximum principle requirement described in Liu
and Osher [19], avoids spurious numerical oscillations in the computed solution.

The integrals respecting the two variables, space and time, are evaluated by means
of a two-point Gauss quadrature. The values of the solution at half-time steps are
calculated using a Taylor expansion with a fourth-order error, using the local Cauchy–
Kowalewski procedure (see [8]) to approximate the time derivatives of the solution
as a function of the derivatives with respect to x. We also present an extension to
systems of equations, where the computed solution at quadrature nodes is obtained
by the so called natural continuous extension of Runge–Kutta schemes (see Zennaro
[26], Bianco, Puppo, and Russo [3], or Levy, Puppo, and Russo [16]).

In this paper, first, we present the equations that define the upwind and central
schemes for solving the problem (1.1). Next, the fourth-order nonoscillatory recon-
struction procedure is described. It guarantees that the resulting numerical scheme
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satisfies the properties that generate its nonoscillatory behavior. Finally, some prob-
lems with known analytical solution are solved to verify the order of the schemes
presented here and to compare their behavior with the schemes developed in Liu and
Osher [19] and Liu and Tadmor [20].

2. Upwind and central schemes. Let us suppose that the time interval is
discretized uniformly into the values tn = n · Δt, n = 0, 1, 2, . . . , NT . We assume
that the grid points {xj} are distributed uniformly at the spatial domain at which
(1.1) will be defined, verifying that xj = xj−1 + Δx∀j = 1, . . . , NX, where Δx is a
known constant. Given a point (xj , t

n), we consider the control volume defined by
[xj− 1

2
, xj+ 1

2
] ×
[
tn, tn+1

]
, where xj± 1

2
= xj ± Δx/2. By integrating (1.1) over this

control volume, we obtain

un+1
j = un

j − 1

Δx

[∫ tn+1

tn
f
(
u
(
xj+ 1

2
, τ
))

dτ −
∫ tn+1

tn
f
(
u
(
xj− 1

2
, τ
))

dτ

]
,(2.1)

where the cell average un
j is defined as

un
j =

1

Δx

∫
Ij

u (ϕ, tn) dϕ, Ij =

{
ϕ, |ϕ− x| ≤ Δx

2

}
.(2.2)

In (2.1) there is a relationship between the average values of the solution at the limit of
the time interval, un

j , u
n+1
j , and its pointvalues at the boundary of the space interval,

u(xj± 1
2
, τ). The steps to follow in the implementation of numerical schemes can be

described as follows.

(1) For each time value tn, n ∈ {0, 1, . . . , NT − 1}, we have an approximation of
the cell-averages of the solution wn

j
∼= un

j ∀j ∈ {0, 1, . . . , NX}, at the nodes xj . The
approximation will be of order O((Δx)4).

(2) The pointvalues of w(x, tn)∀x ∈ {x0 − Δx/2, . . . , xNX + Δx/2} are recon-
structed using a piecewise polynomial interpolation,

w(x, tn) ≡
NX∑
j=0

Rj(x;wn)χj(x), χj(x) =

{
1 if x ∈ Ij ,
0 if x /∈ Ij ,

(2.3)

where Rj(x;wn) is a polynomial that reconstructs the pointvalues of the solution
using the discrete values wn

i , i ∈ {0, 1, . . . , NX}, verifying

1

Δx

∫ x
j+ 1

2

x
j− 1

2

Rj(x;wn) = wn
j , Rj(x;wn) = w(x, tn) + O((Δx)4) ∀x ∈ Ij .(2.4)

(3) In the case of the central schemes, the average values wn
j+ 1

2
are calculated

using the approximation given in (2.3):

wn
j+ 1

2
≡ 1

Δx

[∫ xj+Δx/2

xj

Rj(x;wn) dx +

∫ xj+1

xj+Δx/2

Rj+1(x;wn) dx

]
.(2.5)

The integrals in (2.1) are evaluated in an exact way taking into account that Rj(x;wn)
and Rj+1(x;wn) are degree-three polynomials.
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(4) The integrals with respect to the time variable are approximated using a
two-point Gauss quadrature. Thus,

∫ tn+1

tn
f(w(xj± 1

2
, τ))dτ ≈ Δt

2

(
f(w(xj± 1

2
, tn + β0)) + f(w(xj± 1

2
, tn + β1))

)
(2.6)

β0 = Δt

(
1 − 1/

√
3

2

)
, β1 = Δt

(
1 + 1/

√
3

2

)
.(2.7)

In order to approximate the pointvalues of w at the time steps that appear in (2.6),
we may use a Taylor expansion with an error O((Δx4)). This technique is used, for
example, in Liu and Osher [19] and Liu and Tadmor [20]. Another efficient method
would be the natural continuous extension of Runge–Kutta methods advocated by
Bianco, Puppo, and Russo [3] and Levy, Puppo, and Russo [16]. We will use this
method in the resolution of systems of equations which achieve the same accuracy
with much lower computational effort.

(5) In order to calculate the cell-averages of w at tn+1, we distinguish two cases.
(5a) Upwind schemes. The cells are intervals centered at each xj (equation (2.1),

after replacing the function u—in that equation—for the function w). In order to
calculate the value of f(w(xj± 1

2
, tn + βk)) in expression (2.6), we will use the Roe

flux with entropy fix, although other fluxes can also be used, as those described in
Liu and Osher [19].

(5b) Central schemes. The cells are intervals centered at each xj+ 1
2
.

wn+1
j+ 1

2

= wn
j+ 1

2
− 1

Δx

[∫ tn+1

tn
f (w (xj+1, τ)) dτ −

∫ tn+1

tn
f (w (xj , τ)) dτ

]
.(2.8)

The terms on the right-hand side in (2.1) and (2.8) are calculated using the approxi-
mations (2.5)–(2.7).

(6) We go back to step (1) and restart the procedure until calculating wNT
i

∼=
u(xi, t

NT ), i ∈ {0, 1, . . . , NX}. Then, we use formula (2.3) to obtain the pointvalues
with O((Δx)4).

3. Fourth-order nonoscillatory reconstruction. This section presents the
reconstruction procedure used to obtain each Rj(x;wn) from the cell averages wn

k , k ∈
{j − 2, j − 1, j, j + 1, j + 2}.

3.1. Fourth order and conservation. Initially, we will consider the degree-
three polynomial that verifies these conditions:

pj(xj ;w
n) = wn

j , pj(xj−1;w
n) = wn

j−1, pj(xj+1;w
n) = wn

j+1,(3.1)

Δx
dpj
dx

(xj ;w
n) = Δx

∂w

∂x
(xj , t

n) ≡ dnj , where w(x, tn) =
1

Δx

∫ x+Δx/2

x−Δx/2

w(ϕ, tn) dϕ.

This polynomial can be expressed as

pj (x;wn) = wn
j + dnj ·

(
x− xj

Δx

)
+

(
wn

j−1 − 2wn
j + wn

j+1

2

)
·
(
x− xj

Δx

)2

+

(−wn
j−1 + wn

j+1 − 2dnj
2

)
·
(
x− xj

Δx

)3

.(3.2)
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Since

w(x, tn) = w(x, tn) − 1

24
(Δx)

2 ∂2w(x, tn)

∂x2
+ O (Δx)

4
,(3.3)

the conservative polynomial, qj(x;wn) that verifies the conditions in (2.4) can be
defined as

qj(x;wn) = pj(x;wn) − 1

24
(Δx)

2 d2pj(x;wn)

dx2
.(3.4)

Therefore,

qj(x;wn) = wn
j − 1

24

(
wn

j−1 − 2wn
j + wn

j+1

)
+

(
wn

j−1 − wn
j+1 + 10dnj
8

)(
x− xj

Δx

)

(3.5) +

(
wn

j−1 − 2wn
j + wn

j+1

2

)(
x− xj

Δx

)2

+

(−wn
j−1 + wn

j+1 − 2dnj
2

)(
x− xj

Δx

)3

.

In case that

dnj = dsnj ≡ 2

3
wn

j+1 −
2

3
wn

j−1 −
1

12
wn

j+2 +
1

12
wn

j−2,(3.6)

qj(x;wn) coincides with the centered polynomial, defined as the average value be-
tween two conservative piecewise polynomials: the conservative polynomial which
uses

{
wn

j−1, w
n
j , w

n
j+1, w

n
j+2

}
and the polynomial based on

{
wn

j−2, w
n
j−1, w

n
j , w

n
j+1

}
.

Then, by replacing the value of dnj given in (3.6) in expression (3.5), we obtain the
following conservative polynomial that verifies conditions (2.4):

q∗j (x;wn) = Cn
o,j + Cn

1,j

(
x− xj

Δx

)
+ Cn

2,j

(
x− xj

Δx

)2

+ Cn
3,j

(
x− xj

Δx

)3

,(3.7)

Cn
o,j = wn

j − 1

24

(
wn

j+1 − 2wn
j + wn

j−1

)
, Cn

1,j =
−5wn

j+2 + 34wn
j+1 − 34wn

j−1 + 5wn
j−2

48
,

Cn
2,j =

1

2

(
wn

j+1 − 2wn
j + wn

j−1

)
, Cn

3,j =
1

12

(
wn

j+2 − 2wn
j+1 + 2wn

j−1 − wn
j−2

)
.

3.2. Shape-preserving when the cell-averages form a monotone se-
quence. We will define dnj in (3.5) so that if the cell-averages {wn

j−1, w
n
j , w

n
j+1}

form a monotone sequence, then qj(x;wn) is monotone on Ij . We will denote as
shape-preserving properties the following:

(I) qj(x;wn) is monotonically increasing in Ij if wn
j−1 ≤ wn

j ≤ wn
j+1.

(II) qj(x;wn) is monotonically decreasing in Ij if wn
j−1 ≥ wn

j ≥ wn
j+1.

To simplify the notation, first we define

WCn
j = wn

j+1 − wn
j−1, WRn

j = wn
j+1 − wn

j , WC2nj = wn
j+2 − wn

j−2.(3.8)

Observation 1. If dnj =
WCn

j

2 , then according to (3.5) qj(x;wn) coincides with a

quadratic polynomial. In this case,
dqj(xj±Δx/2;wn)

dx = ±wn
j±1−wn

j

Δx , and therefore the
shape-preserving properties are verified.

Observation 2. In the case at which dnj = dsnj (defined in (3.6)), the following
hold.

1. If
(
2 ·WCn

j = WC2nj
)
, then dnj =

WCn
j

2 (see Observation 1).
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2. If
(
2 ·WCn

j > WC2nj
)

and wn
j−1 ≤ wn

j ≤ wn
j+1, then, according to (3.7),

d3q∗j (x;wn)

dx3
=

1

(Δx)3
(
6 · Cn

3,j

)
=

1

2 · (Δx)3
(
WC2nj − 2 ·WCn

j

)
< 0,

and thus
d(q∗j (x;wn))

dx achieves the minimum value at the endpoints of the interval under
consideration. Since

dq∗j (xj + Δx/2;wn)

dx
=

1

24Δx

(
−WC2nj + 2 ·WCn

j + 24 ·WRn
j

)
> 0,

dq∗j (xj − Δx/2;wn)

dx
=

1

24Δx

(
−WC2nj + 26 ·WCn

j − 24 ·WRn
j

)
> 0,(3.9)

Min{d(q∗j (x;wn))

dx ∀x ∈ Ij} > 0 and q∗j (x;wn) is monotonically increasing in Ij.

3. If
(
2 ·WCn

j < WC2nj
)

and wn
j−1 ≤ wn

j ≤ wn
j+1, then the derivative of

q∗j (x;wn), defined in (3.7), has a minimum at point

xMI = xj +
Δx

3

(
2 ·WRn

j −WCn
j

(1/6)
(
2 ·WCn

j −WC2nj
)
)

= xj −4 ·Δx

(
WRn

j − (1/2)WCn
j(

WC2nj − 2 ·WCn
j

)
)
.

In this way, if
∣∣WRn

j − 1
2WCn

j

∣∣ ≥ 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, then

(
WRn

j >
1

2
WCn

j ⇒ xMI ≤ xj −
Δx

2

)
and

(
WRn

j <
1

2
WCn

j ⇒ xMI ≥ xj +
Δx

2

)
.

Thus, the minimum Min{d(q∗j (x;wn))

dx ∀x ∈ Ij} is achieved at one of these boundary

points, x = xj ± Δx
2 . However, in this case we cannot ensure that the inequalities

given in (3.9) are always verified.
4. If

(
2 ·WCn

j < WC2nj
)

and wn
j−1 ≥ wn

j ≥ wn
j+1, then we can prove that

q∗j (x;wn) is monotonically decreasing in Ij.

5. If
(
2 ·WCn

j > WC2nj
)

and wn
j−1 ≥ wn

j ≥ wn
j+1, then we can prove that

|xMI − xj | ≥ Δx/2 when
∣∣WRn

j − 1
2WCn

j

∣∣ ≥ 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, but we cannot
ensure that q∗j (x;wn) is always monotonically decreasing in Ij.

Observation 3. Supposing that 2 · dnj < WCn
j , then the derivative of qj(x;wn),

defined in (3.5), has a minimum at point

xMI = xj +
Δx

3

(
2 ·WRn

j −WCn
j

2 · dnj −WCn
j

)
.

In addition,

dqj(xMI ;w
n)

dx
= qnxj(d

n
j ) ≡ 1

8Δx

(
10 · dnj −WCn

j

)
+

1

6Δx

((
2 ·WRn

j −WCn
j

)2(
2 · dnj −WCn

j

)
)
.

This is a function that depends on dnj and coincides with a hyperbola. In it, the value

of dnj =
WCn

j

2 −Sn
j

√
15

15

∣∣ 2 ·WRn
j −WCn

j

∣∣ is a local maximum of qnxj(d
n
j ) when Sn

j > 0

and a local minimum of qnxj(d
n
j ) when Sn

j < 0 being Sn
j = Sign(WCn

j ).
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3.2.1. Definition of dn
j . The polynomial q∗j (x;wn) defined in (3.7) does not

fulfill the shape-preserving properties defined in this subsection for any sequence of
values

{
wn

j−2, w
n
j−1, w

n
j , w

n
j+1, w

n
j+2

}
. Therefore, we have to define a procedure that

adequately defines the slopes dnj .

We will consider the value of dnj = dsnj (given in (3.6)) except when this shape-
preserving property is not fulfilled. For this, we use the notation

ds1nj =
WCn

j

10
, ds2nj =

1

2

(
WCn

j − 4 ·WRn
j

)
, ds3nj =

1

2

(
4 ·WRn

j − 3 ·WCn
j

)
,

Sn
j = Sign(WCn

j ), C1 =

√
15

15
, C2 =

15 −
√

15

28
(3.10)

and define dnj in the following way:

(A1) If Sn
j = 0, then dnj = 0.

(A2) If Sn
j �= 0 and

(
2 · Sn

j ·WCn
j ≥ Sn

j ·WC2nj
)
, then dnj = dsnj .

(A3) If Sn
j �= 0 and

(
2 · Sn

j ·WCn
j < Sn

j ·WC2nj
)
, then the following hold:

(A3.1) If wn
j =

wn
j+1+wn

j−1

2 , we define

dnj =

{
Max

{
ds1nj , ds

n
j

}
if Sn

j > 0,

Min
{
ds1nj , ds

n
j

}
if Sn

j < 0.

(A3.2) If wn
j �= wn

j+1+wn
j−1

2 , then the following hold:

(A3.2.1) If
∣∣WRn

j − 1
2WCn

j

∣∣ ≥ 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, then

dnj =

{
Max

{
ds2nj , ds3nj , dsnj

}
if Sn

j > 0,

Min
{
ds2nj , ds3nj , dsnj

}
if Sn

j < 0.

(A3.2.2) If
∣∣WRn

j − 1
2WCn

j

∣∣ < 1
8

∣∣WC2nj − 2 ·WCn
j

∣∣, then

dnj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

WCn
j

2 − Sn
j · C1 ·

∣∣2 ·WRn
j −WCn

j

∣∣ if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ ≤ C2,

WCn
j

2 if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ > C2.

Theorem 3.1. With this definition of dnj the polynomial qj(x;wn) defined by
means of (3.5) verifies the following shape-preserving properties:

(I) qj(x;wn) is monotonically increasing in Ij if wn
j−1 ≤ wn

j ≤ wn
j+1.

(II) qj(x;wn) is monotonically decreasing in Ij if wn
j−1 ≥ wn

j ≥ wn
j+1.

Proof. Let us suppose that wn
j−1 ≤ wn

j ≤ wn
j+1. We have to prove that qj(x;wn)

is monotonically increasing in Ij =
[
xj − Δx

2 , xj + Δx
2

]
. A similar argument allows us

to prove that qj(x;wn) is monotonically decreasing in Ij when wn
j−1 ≥ wn

j ≥ wn
j+1.

We will consider all the possible cases.

Case (A1). Sn
j = 0, that is, wn

j−1 = wn
j = wn

j+1. Then dnj = 0 and qj(x;wn) =
wn

j . This polynomial has the same degree of monotonicity as the cell averages{
wn

j−1, w
n
j , w

n
j+1

}
.

Case (A2). Sn
j = 1 and

(
2 ·WCn

j ≥ WC2nj
)
. In this case, dnj = dsnj and, after

observation 2, qj(x;wn) is monotonically increasing in Ij .
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Case (A3.1). Sn
j = 1,

(
2 ·WCn

j < WC2nj
)
, and wn

j =
wn

j+1+wn
j−1

2 . Then (2 ·
WRn

j = WCn
j ) and according to Observation 3,

xMI = xj ,
dqj(xMI ;w

n)

dx
=

1

8Δx

(
10 · dnj −WCn

j

)
.

Since in this case dnj = Max{WCn
j

10 , dsnj }, then
dqj(xMI ;wn)

dx ≥ 0 and qj(x;wn) is mono-
tonically increasing in Ij .

Case (A3.2.1). Sn
j = 1,

(
2 ·WCn

j < WC2nj
)
, wn

j �= wn
j+1+wn

j−1

2 , and
∣∣WRn

j − 1
2WCn

j

∣∣
≥ 1

8

∣∣WC2nj − 2 ·WCn
j

∣∣. In this case, dnj = Max{ 1
2 (WCn

j − 4 ·WRn
j ), 1

2 (4 · WRn
j −

3 ·WCn
j ), dsnj }. Since

(
2 ·WCn

j < WC2nj
)
, then 2 · dsnj < WCn

j . In addition,

WRn
j = 0 ⇒ dnj =

WCn
j

2
, WRn

j = WCn
j ⇒ dnj =

WCn
j

2
.

If dnj =
WCn

j

2 , it follows that qj(x;wn) coincides with a quadratic polynomial, which
is monotonically increasing in Ij , as we have seen in Observation 1. Therefore, we
can suppose that 0 < WRn

j < WCn
j . Hence(

WCn
j − 4 ·WRn

j

)
< WCn

j , WCn
j −
(
4 ·WRn

j − 3 ·WCn
j

)
= 4 ·

(
WCn

j −WRn
j

)
> 0

so that it follows that (2 · dnj < WCn
j ). On the other hand, applying Observations 2

and 3,

dnj ≥ dsnj
WRn

j > 1
2WCn

j

}
⇒ xMI = xj + Δx

3

(
2·WRn

j −WCn
j

2·dn
j
−WCn

j

)
≤ xj + Δx

3

(
2·WRn

j −WCn
j

2·dsn
j
−WCn

j

)
≤ xj − Δx

2 ,
dnj ≥ dsnj
WRn

j < 1
2WCn

j

}
⇒ xMI = xj − Δx

3

(
WCn

j −2·WRn
j

2·dn
j
−WCn

j

)
≥ xj − Δx

3

(
WCn

j −2·WRn
j

2·dsn
j
−WCn

j

)
≥ xj + Δx

2 .

In this way, because of dnj ≥ dsnj we deduce the following:

xMI /∈
]
xj −

Δx

2
, xj +

Δx

2

[
.

Thus, the minimum, Min{d(qj(x;wn))
dx ∀x ∈ Ij}, is achieved at one of the boundary

points x = xj ± Δx
2 . By derivating in formula (3.5), we get that

dqj(xj + Δx/2;wn)

dx
≥ 0 ⇐⇒ dnj ≥ 1

2

(
WCn

j − 4 ·WRn
j

)
,

dqj(xj − Δx/2;wn)

dx
≥ 0 ⇐⇒ dnj ≥ 1

2

(
4 ·WRn

j − 3 ·WCn
j

)
.

The definition of dnj allows us to state that Min{d(qj(x;wn))
dx ∀x ∈ Ij} ≥ 0, and thus we

conclude that qj(x;wn) is monotonically increasing in Ij .

Case (A3.2.2). Sn
j = 1,

(
2 ·WCn

j < WC2nj
)
, wn

j �= wn
j+1+wn

j−1

2 , and
∣∣WRn

j − 1
2WCn

j

∣∣
< 1

8

∣∣WC2nj − 2 ·WCn
j

∣∣. In this case,

dnj =

⎧⎪⎪⎨
⎪⎪⎩

WCn
j

2 −
√

15
15

∣∣ 2 ·WRn
j −WCn

j

∣∣ if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ ≤ 15−
√

15
28 ,

WCn
j

2 if

∣∣∣∣WRn
j

WCn
j

− 1
2

∣∣∣∣ > 15−
√

15
28
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so that it follows that 2 ·dnj ≤ WCn
j . In the case in which 2 ·dnj = WCn

j it follows that
qj(x;wn) coincides with a two-degree polynomial, which is monotonically increasing
in Ij , as we have seen in Observation 1. Therefore, we can suppose that 2 ·dnj < WCn

j

and |WRn
j

WCn
j

− 1
2 | ≤

15−
√

15
28 . In this situation,

dqj(x;wn)
dx reaches a minimum at point

xMI = xj + Δx
3 (

2·WRn
j −WCn

j

2·dn
j
−WCn

j

) (see Observation 3). Given that

WRn
j >

1

2
WCn

j ⇒
{(

5

6
WCn

j − 2

3
WRn

j

)
<

WCn
j

2
−

√
15

15

(
2 ·WRn

j −WCn
j

)
= dnj

}
,

WRn
j <

1

2
WCn

j ⇒
{(

1

6
WCn

j +
2

3
WRn

j

)
<

WCn
j

2
−

√
15

15

(
WCn

j − 2 ·WRn
j

)
= dnj

}
,

then

WRn
j > 1

2WCn
j ⇒

{
xMI = xj + Δx

3

(
2·WRn

j −WCn
j

2·dn
j
−WCn

j

)
< xj − Δx

2

}
,

WRn
j < 1

2WCn
j ⇒

{
xMI = xj + Δx

3

(
2·WRn

j −WCn
j

2·dn
j
−WCn

j

)
> xj + Δx

2

}
.

On the other hand,

WRn
j > 1

2WCn
j ⇒

{
dqj(xj±Δx/2;wn)

dx ≥ 0 ⇐⇒ dnj ≥ 1
2

(
4 ·WRn

j − 3 ·WCn
j

)}
,

WRn
j < 1

2WCn
j ⇒

{
dqj(xj±Δx/2;wn)

dx ≥ 0 ⇐⇒ dnj ≥ 1
2

(
WCn

j − 4 ·WRn
j

)}
.

Given that we have supposed that |WRn
j

WCn
j

− 1
2 | ≤

15−
√

15
28 , then dnj verifies the latter

inequalities, and thus qj(x;wn) is monotonically increasing in Ij .

3.3. Conditions in cells with extrema points. In order to guarantee that
qj(x;wn) has the same shape as the cell-averages wn

j in the domain Ij , we add these
requirements to those used in the previous section:

1. qj(x;wn) has a maximum in Ij if and only if wn
j−1 < wn

j > wn
j+1.

2. qj(x;wn) has a minimum in Ij if and only if wn
j−1 > wn

j < wn
j+1.

On the other hand, the definition of θnj that we will use later in (3.13) requires that
the following properties are satisfied:

1. If wn
j−1 < wn

j > wn
j+1, then qj

(
xj − Δx

2 ;wn
)
≥ 1

2

(
wn

j−1 + wn
j

)
and qj(xj +

Δx
2 ; wn) ≥ 1

2

(
wn

j + wn
j+1

)
.

2. If wn
j−1 > wn

j < wn
j+1, then qj

(
xj − Δx

2 ;wn
)
≤ 1

2

(
wn

j−1 + wn
j

)
and qj(xj +

Δx
2 ; wn) ≤ 1

2

(
wn

j + wn
j+1

)
.

According to the notation given in (3.8) and (3.10), supposing that

ds4nj =
1

6

(
5 ·WCn

j − 4 ·WRn
j

)
, ds5nj =

1

6

(
4 ·WRn

j + WCn
j

)
,(3.11)

we define dnj in cells with extrema points in the following way:
(B) If wn

j−1 < wn
j > wn

j+1 (the cell averages have a maximum), then the following
hold:

(B1) If WC2nj = 2 ·WCn
j , then dnj = dsnj ≡ 2

3WCn
j − 1

12WC2nj = 1
2WCn

j .
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(B2) If WC2nj < 2 ·WCn
j , then dnj = Min

{
ds2nj , ds4nj , dsnj

}
.

(B3) If WC2nj > 2 ·WCn
j , then dnj = Max

{
ds3nj , ds5nj , dsnj

}
.

(C) If wn
j−1 > wn

j < wn
j+1 (the cell averages have a minimum), then the following

hold:
(C1) If WC2nj = 2 ·WCn

j , then dnj = dsnj = 2
3WCn

j − 1
12WC2nj = 1

2WCn
j .

(C2) If WC2nj < 2 ·WCn
j , then dnj = Min

{
ds3nj , ds5nj , dsnj

}
.

(C3) If WC2nj > 2 ·WCn
j , then dnj = Max

{
ds2nj , ds4nj , dsnj

}
.

Observation 4. Similar reasoning to that used in the proof of Theorem 3.1 allows
us to prove that with this definition of dnj , if wn

j−1 < wn
j > wn

j+1, then qj(x;wn)

has a maximum at
[
xj − Δx

2 , xj + Δx
2

]
, verifying these two relations:

qj

(
xj −

Δx

2
;wn

)
≥ 1

2

(
wn

j−1 + wn
j

)
, qj

(
xj +

Δx

2
;wn

)
≥ 1

2

(
wn

j + wn
j+1

)
.

Similarly, if we suppose that wn
j−1 > wn

j < wn
j+1, then we can verify that qj(x;wn)

has a minimum at
[
xj − Δx

2 , xj + Δx
2

]
, verifying the following conditions:

qj

(
xj −

Δx

2
;wn

)
≤ 1

2

(
wn

j−1 + wn
j

)
, qj

(
xj +

Δx

2
;wn

)
≤ 1

2

(
wn

j + wn
j+1

)
.

3.4. Removing the spurious extrema of w(x, tn) at points xj + Δx/2.
To obtain a nonoscillatory reconstruction we will add some additional requirements
for the calculation of Rj(x,w

n):

(a)w(xj , t
n) > w(xj+1, t

n) ⇒ (Rj(xj + Δx/2;wn) ≥ Rj+1(xj + Δx/2;wn)) ,

(b)w(xj , t
n) < w(xj+1, t

n) ⇒ (Rj(xj + Δx/2;wn) ≤ Rj+1(xj + Δx/2;wn)) ,

(c)w(xj , t
n) = w(xj+1, t

n) ⇒ (Rj(xj + Δx/2;wn) = Rj+1(xj + Δx/2;wn)) .(3.12)

These properties together to those viewed in sections 3.2 and 3.3 have been defined
so that the resulting reconstruction polynomial w(x, tn), defined in (2.3), presents a
nonoscillatory nature in the sense that the number of extrema of w(x, tn) does not

exceed the number shown in the function
∑NX

j=1 w
n
j χj(x). The nonincreasing number

of extrema implies convergence along the lines of Liu and Tadmor [20].
To verify (3.12), Liu and Osher [19] consider the modification of the form

Rj(x;wn) ≡ θnj qj(x;wn) + (1 − θnj )wn
j ,(3.13)

where θnj ∈ [0, 1]. The algorithm that allows us to obtain θnj is described in detail
in Liu and Osher [19], although in that reference it is only used when qj(x;wn) is
a conservative parabola. Notice that the value of θnj that appears in formula (3.13)
takes a value equal to 1 in all the cells with extrema points (see Liu and Osher
[19]). Conditions given in section 3.3 avoid the development of spurious extrema of
Rj(x;wn) in the endpoints of an interval with a local maximum or a local minimum.

Remark 1. Parameter θnj used in (3.13) is defined in Liu and Osher [19] so that

(1− θnj ) is proportional to the interface jump qj+1

(
xj + Δx

2 ;wn
)
− qj

(
xj + Δx

2 ;wn
)
.

If dnj = dsnj (given by (3.6)), then the reconstruction is fourth-order accurate. As a
consequence of the fourth-order accuracy in polynomials qj(x;wn) and qj+1(x;wn),
the size of the interface jump, and consequently of (1 − θnj ), is of order O((Δx)4).
In this way, the definition of Rj(x;wn) given in (3.13) still verifies the properties in
(2.4).
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However, the definition of dnj introduced in cases (A3.1), (A3.2.1), (A3.2.2), (B2),

(B3), (C2), and (C3) may cause the value of (1 − θnj ) to not be of order O((Δx)4)
in a small number of cells, especially near a local maximum, a local minimum, or
a discontinuity. For example, if WRn

j ≈ WCn
j or WRn

j ≈ 0 and Sn
j > 0, then dnj

can be closer to WCn
j /2 (which is the slope of the parabola) than to dsnj . Moreover,

in case (A3.2.2) dnj can be equal to WCn
j /2. In order to achieve the experimental

fourth-order of accuracy in some experiments with smooth solutions we will give a
special treatment of the cells that are near extrema (see conditions (4.2)). In fact,
one should require that dnj /ds

n
j = 1 + O((Δx)3) on smooth solutions.

Remark 2. Rj(x;wn) defined in (3.13), with qj(x : wn) described in subsections
3.1, 3.2, and 3.3, has the same shape as the cell-averages {wn

j−1, w
n
j , w

n
j+1}.

3.5. Definition of slopes dn
j in (3.2) so that pj(x; fn) fulfills condi-

tions given in sections 3.2 and 3.3. A few modifications are needed to compute
the nonoscillatory reconstruction from pointvalues for the flux fn

j = f(wn
j ) which is

needed in the Runge–Kutta method with natural continuous extension described in
Levy, Puppo, and Russo [16]. According to (3.2) the degree-three polynomial from
the pointvalues fn

k , k ∈ {j − 2, j − 1, j, j + 1, j + 2}, is given by

pj (x; fn) = fn
j + dnj ·

(
x− xj

Δx

)
+

(
fn
j−1 − 2fn

j + fn
j+1

2

)
·
(
x− xj

Δx

)2

+

(−fn
j−1 + fn

j+1 − 2dnj
2

)
·
(
x− xj

Δx

)3

.(3.14)

To ensure that pj(x; fn) fulfills the requirements of sections 3.2 and 3.3, we define dnj
in the same way as in those sections with the exceptions that

ds1nj = 0, ds2nj =
1

2

(
WCn

j − 8 ·WRn
j

)
, ds3nj =

1

2

(
8 ·WRn

j − 7 ·WCn
j

)
,(3.15)

C1 =

√
3

6
, C2 =

6

12 +
√

3
, WCn

j = fn
j+1 − fn

j−1, WRn
j = fn

j+1 − fn
j ,(3.16)

and cell-averages wn
j are substituted by pointvalues fn

j . The evaluation of ∂f/∂x in

the Runge–Kutta step is performed by θnj
dpj(x;fn)

dx , where θnj is defined as in Liu and
Osher [19]. Thus, we maintain high accuracy and control over oscillations.

4. Numerical experiments. In order to verify the behavior and accuracy of
the numerical schemes that are presented in this paper, several test-type problems
with known analytical solution are solved next. Time integrals are performed by a
Taylor expansion (Taylor-upwind and Taylor-central schemes) or by the fourth-order
Runge–Kutta method with natural continuous extensions developed in Levy, Puppo,
and Russo [16] (RK-NCE-central scheme). In this last case the reconstruction defined
in section 3.5 will also be used.

Problem 1. We solve the linear transport equation

∂u(x, t)

∂t
+

∂u(x, t)

∂x
= 0, −1 ≤ x ≤ 1,(4.1)

subject to 2-periodic initial data, u(x, 0) = u0(x). To verify the accuracy of the
numerical schemes, different u0(x) functions have been used.
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Table 4.1

Linear transport equation (4.1) with u0(x) = sin(π x). Errors at T = 10.

(a) Taylor-upwind scheme, with Δt = 0.8Δx.

NX L1 error L1 order L∞ error L∞ order
40 3.071427 10−5 4.14 2.498590 10−5 4.16
80 1.746260 10−6 4.05 1.396909 10−6 4.06
160 1.056129 10−7 4.02 8.374969 10−8 4.02
320 6.529029 10−9 5.152456 10−9

(b) Taylor-central scheme, with Δt = 0.4Δx.

NX L1 error L1 order L∞ error L∞ order
40 5.558861 10−5 4.10 7.473019 10−5 4.02
80 3.231451 10−6 4.14 4.594014 10−6 3.86
160 1.836719 10−7 4.09 3.153211 10−7 3.87
320 1.076991 10−8 2.155580 10−8

(c) RK-NCE-central scheme, with Δt = 0.25Δx.

NX L1 error L1 order L∞ error L∞ order
40 1.531422 10−4 4.18 1.689413 10−4 4.35
80 8.423959 10−6 4.06 8.305782 10−6 4.02
160 5.053152 10−7 4.06 5.130312 10−7 3.97
320 3.034160 10−8 3.280898 10−8

The first function is u0(x) = sin(π x). Table 4.1 shows the errors and the exper-
imental order of accuracy in L1 and L∞ norms at time T = 10. NX indicates the
total number of cells so that the step size Δx = 2/NX. Using a Taylor expansion for
the time evolution, we have selected a time step so that Δt = 0.8Δx in the upwind
scheme, whereas in the central scheme Δt = 0.4Δx. When we use a RK-NCE-central
scheme, Δt = 0.25Δx as in Levy, Puppo, and Russo [16]. Table 4.1 shows that nu-
merical schemes described in this paper are about fourth-order accuracy in L1 and
L∞ norms, which is an improvement over the schemes described in Liu and Osher
[19] and Liu and Tadmor [20], which are third-order schemes.

The second initial condition chosen is u0(x) = sin4(π x). Table 4.2 shows the
errors in L1 and L∞ norms at time T = 10. The schemes presented here maintain
the fourth-order accuracy, even with finer grids, without the need of satisfying the
local maximum principle described in Liu and Osher [19]. The nonconsideration of
that local maximum principle implies that the θj that appear in formula (3.13) take
a value equal to 1 in all the cells with extrema points (see Liu and Osher [19]). To
improve the accuracy of the numerical schemes presented in this paper, in the results
shown in Table 4.2 we have added two additional requirements (see Remark 1):

If wn
j−1 < wn

j > wn
j+1 ⇒ dnj−1 = dsnj−1, dnj+1 = dsnj+1.

If wn
j−1 > wn

j < wn
j+1 ⇒ dnj−1 = dsnj−1, dnj+1 = dsnj+1.(4.2)

Thus, we avoid the slope dnj taking a value close to WCn
j /2 in the neighboring cells

to those containing the extrema points of the solution. Remember that with such a
slope, qj(x;wn) coincides with a conservative quadratic polynomial. As mentioned in
Remark 1, parameter θnj is defined in such a way that (1− θnj ) is proportional to the
interface jump of the cell centered in xj . Conditions (4.2) cause the interface jump to
be lower at the boundary of cells with extrema points.

The third initial condition is a discontinuous 2-periodic function that was used
in Balsara and Shu [2]. This is a severe problem since it consists of a combination of
functions that are not smooth, with other ones, which are smooth, but with a high
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Table 4.2

Linear transport equation (4.1) with u0(x) = sin4(π x). Errors at T = 10.

(a) Taylor-upwind scheme, with Δt = 0.8Δx.

NX L1 error L1 order L∞ error L∞ order
80 2.430672 10−4 4.16 2.937589 10−4 4.17
160 1.362647 10−5 4.04 1.636374 10−5 3.93
320 8.262462 10−7 4.01 1.075533 10−6 4.06
640 5.110279 10−8 6.461631 10−8

(b) Taylor-central scheme, with Δt = 0.4Δx.

NX L1 error L1 order L∞ error L∞ order
80 3.499147 10−4 4.14 5.062172 10−4 4.49
160 1.977973 10−5 4.06 2.258267 10−5 3.96
320 1.189089 10−6 3.99 1.454815 10−6 4.06
640 7.460379 10−8 8.713768 10−8

(c) RK-NCE-central scheme, with Δt = 0.25Δx.

NX L1 error L1 order L∞ error L∞ order
80 1.052742 10−3 4.15 1.637417 10−3 4.60
160 5.930366 10−5 4.07 6.747230 10−5 4.02
320 3.535521 10−6 3.98 4.154436 10−6 4.03
640 2.237979 10−7 2.539025 10−7

gradient in zones close to the peaks. The initial condition is given by

u0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
6 (G(x, β, z − δ) + G(x, β, z + δ) + 4G(x, β, z)), −0.8 ≤ x ≤ −0.6,

1, −0.4 ≤ x ≤ −0.2,
1 − |10 (x− 0.1)|, 0 ≤ x ≤ 0.2,

1
6 (F (x, α, a− δ) + F (x, α, a + δ) + 4F (x, α, a)), 0.4 ≤ x ≤ 0.6,

0 otherwise

(4.3)

defined as

G(x, β, z) = e−β(x−z)2 , F (x, α, a) =
√

Max (1 − α2(x− a)2, 0).(4.4)

The constants that appear in (4.3) and (4.4) are given by

a = 0.5; z = −0.7; δ = 0.005; α = 10; β =
log(2)

36δ2
.(4.5)

Figure 4.1 shows the numerical results obtained at time T = 20, with the Taylor-
central scheme developed in this paper, comparing the numerical solution with the
analytical solution which is represented by a continuous line. Unlike the solutions pre-
sented in Balsara and Shu [2], here we have considered a coarser grid with NX = 500.
This shows the greater accuracy of our scheme, in comparison with the conservative
quadratic polynomial developed in Liu and Osher [19], in particular at the peaks of
the Gaussian curve and in the triangle. In addition, the profiles are more symmetrical
than those computed in Levy, Puppo, and Russo [16], and the values of the numerical
solution are bounded by the maximum and minimum of the initial condition despite
not using the maximum principle property given in Liu and Osher [19]. This is a con-
dition that is not fulfilled when qj(x;wn) is replaced by the two-degree polynomial
used in this reference. Previous remarks for the Taylor-central scheme are also valid
for the Taylor-upwind and RK-NCE-central schemes.

The last initial condition is given by

u0(x + 0.5) =

⎧⎨
⎩

−x sin
(

3
2π x2

)
if − 1 < x < − 1

3 ,
|sin(2π x)| if |x| ≤ 1

3 ,
2x− 1 − sin(3π x )/6, if 1

3 < x ≤ 1,
(4.6)
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Fig. 4.1. Numerical and analytical solutions of problem 1 at T = 20 with u0(x) defined by
(4.3)–(4.5), considering a grid with NX = 500. We have used the Taylor-central scheme, with
Δt = 0.45Δx.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

u(
x,

2)

x

Fig. 4.2. Numerical and analytical solutions of Problem 1 at T = 2 with u0(x) defined by
(4.6), considering NX = 120 and Δt = 0.4Δx. The solution marked with has been computed by
our Taylor-central scheme. The solution marked with × is the solution obtained considering that
qj(x;wn) coincides with the quadratic polynomial of Liu and Osher [19] and Liu and Tadmor [20].

supposing that it extends to the entire 2-period domain.

Condition (4.6) consists of a function highly discontinuous, used in the numerical
experiments developed in Harten [9]. Figure 4.2 shows the results obtained at T = 2,
with NX = 120, comparing the results obtained with our Taylor-central scheme and
those in which qj(x;wn) is the conservative two-degree polynomial used in Liu and
Osher [19] and Liu and Tadmor [20]. It can be observed that the greater accuracy of
our schemes is especially noted around the discontinuities. On the other hand, the
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Table 4.3

Errors in the resolution of Burgers’s equation with conditions (4.7) at T = 0.3.

(a) Taylor-upwind scheme, with Δt = 0.6Δx.

NX L1 error L1 order L∞ error L∞ order
80 2.551210 10−6 4.02 1.018463 10−5 4.06
160 1.567119 10−7 4.01 6.108933 10−7 3.94
320 9.734252 10−9 4.00 3.988465 10−8 4.07
640 6.090892 10−10 3.95 2.370593 10−9 3.37
1280 3.947035 10−11 2.291545 10−10

(b) Taylor-central scheme, with Δt = 0.33Δx.

NX L1 error L1 order L∞ error L∞ order
80 1.536227 10−6 4.18 8.083824 10−6 4.22
160 8.454566 10−8 4.10 4.340597 10−7 4.18
320 4.916180 10−9 4.07 2.392437 10−8 4.10
640 2.935978 10−10 3.99 1.393063 10−9 4.13
1280 1.846273 10−11 7.967693 10−11

(c) RK-NCE-central scheme, with Δt = 0.18Δx.

NX L1 error L1 order L∞ error L∞ order
80 2.703482 10−6 4.18 1.875872 10−5 4.22
160 1.496377 10−7 4.21 1.006314 10−6 4.24
320 8.089214 10−9 4.17 5.322066 10−8 4.33
640 4.495486 10−10 4.12 2.641527 10−9 4.13
1280 2.589858 10−11 1.506755 10−10

numerical solution is delimited by the maximum and minimum of the initial condition
without the need of satisfying the local maximum principle of Liu and Osher [19].

Problem 2. Burgers’ equation is solved with 2-periodic initial data:

∂u(x, t)

∂t
+

∂
(

1
2u

2(x, t)
)

∂x
= 0, −1 ≤ x ≤ 1, u (x, 0) = 1 +

1

2
sin(πx).(4.7)

Recall that the analytical solution of this problem is smooth up to the critical time
T = 2/π. Liu and Osher [19] and Liu and Tadmor [20] show the results obtained
using a parabolic reconstruction at T = 0.3. Table 4.3 presents the numerical errors
obtained with our schemes, together with the experimental order of accuracy at T =
0.3. Our schemes (upwind and central) have an order of accuracy which is about 4
in both L1 and L∞ norms. However, the maximum order obtained with the schemes
described by Liu and Osher [19] (Taylor-upwind scheme, Δt = 0.6Δx) and Liu and
Tadmor [20] (Taylor-central scheme, Δt = 0.33Δx) is lower than 2.3 in the L∞ norm
and lower than 2.87 in the L1 norm. In the RK-NCE-central scheme we have chosen
Δt = 0.18Δx as in Levy, Puppo, and Russo [16].

At T = 1.1 the analytical solution of problem (4.7) develops a discontinuity. Our
numerical scheme maintains an order of accuracy of about 4 when the errors are
calculated at a distance equal to 0.1 away from the discontinuity. Figure 4.3(a) shows
the result obtained with our Taylor-central scheme. Like in the scheme developed in
Liu and Tadmor [20], the numerical solution is not bounded by the maximum and
minimum of the analytical solution. In order to obtain this property it is necessary
to add the maximum principle requirement described in Liu and Osher [19], as we
can see in Figure 4.3(b). However, without the condition of maximum principle,
the numerical solution retains results of the same quality as the analytical solution.
Previous remarks are also valid for the Taylor-upwind and RK-NCE-central schemes.

Problem 3. Here we apply the schemes developed in this paper to Buckley–
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Fig. 4.3. Numerical and analytical solutions of Problem 2 at T = 1.1, with our Taylor-central
scheme, considering a grid with NX = 80 and Δt = 0.33Δx. (a) Not using the local maximum
principle. (b) Using the local maximum principle.

Leverett’s problem, whose flux is nonconvex:

∂u

∂t
+

∂f(u)

∂x
= 0, −1 ≤ x ≤ 1, f(u) =

4u2

4u2 + (1 − u)2
(4.8)

subject to the initial condition

u0(x) =

{
1 x ∈ [−0.5, 0],
0 otherwise.

(4.9)

Similarly to Liu and Osher [19] and Jiang et al. [11], we have computed the solution
at T = 0.4 with our Taylor-upwind and central schemes. Figure 4.4 shows the results
obtained with NX = 80. In contrast to the scheme described in Liu and Osher [19],
our Taylor-upwind scheme presents instabilities in the solution of the problem (4.8)–
(4.9) for Δt = 0.3Δx. However, it presents very accurate solutions when Δt = 0.25Δx.
Moreover, the condition of the local maximum principle described in Liu and Osher
[19] has not been necessary, as shown in Figure 4.4(a). The central schemes described
in this paper provide smoother solutions than the upwind scheme for the resolution of
the problem under study (Figures 4.4(a)–4.4(b)), although the three schemes present
a similar behavior.

Euler equations of gas dynamics. We test our schemes on the system of
Euler equations of gas dynamics for a gas with γ = 1.4. We consider a problem with
smooth analytical solution and the two Riemann problems studied in Liu and Tadmor
[20]. The variables ρ,m,E denote the density, momentum, and total energy per unit
volume, respectively. Moreover, p denotes the pressure and v denotes the velocity.

Problem 4. The initial condition is set to be ρ(x, 0) = 1 + 0.2 sin(πx), v(x, 0) =
1, p(x, 0) = 1, with 2-periodic boundary conditions, −1 ≤ x ≤ 1. The exact solution
is ρ(x, t) = 1 + 0.2 sin(π(x− t)), v = 1, p = 1. We compute the solution at T = 2 as
in Qiu and Shu [22], using our RK-NCE-central scheme with the componentwise re-
construction described in this paper. Table 4.4 shows the results obtained considering
Δt = 0.1Δx. We can see that our scheme achieves its designed order of accuracy.
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Fig. 4.4. Numerical and analytical solutions of Problem 3 at T = 0.4, using a grid with NX =
80. (a) Taylor-upwind scheme with Δt = 0.25Δx. (b) Taylor-central scheme with Δt = 0.1Δx.

Table 4.4

Errors of density in the resolution of Problem 4 at T = 2.

RK-NCE-central scheme, with Δt = 0.1Δx.
NX L1 error L1 order L∞ error L∞ order
40 9.910941 10−6 4.53 7.147074 10−6 4.53
80 3.870207 10−7 4.26 3.083984 10−7 4.27
160 2.020669 10−8 4.10 1.601040 10−8 4.11
320 1.178203 10−9 4.04 9.296230 10−10 4.04
640 7.181752 10−11 5.656586 10−11

Problem 5. Shock tube problem with Sod’s initial data [24]:{
(ρl,ml, El) = (1, 0, 2.5), x < 0.5,
(ρr,mr, Er) = (0.125, 0, 0.25), x > 0.5.

Problem 6. Shock tube problem with the Lax’s initial data [14]:{
(ρl,ml, El) = (0.445, 0.311, 8.928), x < 0.5,
(ρr,mr, Er) = (0.5, 0, 1.4275), x > 0.5.

In Problems 5 and 6 the computational domain is [0, 1]. We integrate the equa-
tions to T = 0.16, i.e., before the perturbations reach the boundary of the compu-
tational region (free flow boundary conditions). We compute the numerical solution
with our RK-NCE-central scheme, using the componentwise reconstruction described
in this paper. In Figure 4.5 we plot the computed solution with NX = 200 grid
points as in Liu and Tadmor [20]. We observe the improved resolution in comparison
to the corresponding third-order central results of that reference. However, our so-
lutions present more oscillations, which is in agreement with what is commented on
in [22]. Qiu and Shu [22] conclude that the componentwise central WENO scheme
will become more oscillatory when the order of accuracy increases. Qiu and Shu [22]
also observe that the oscillations disappear when the reconstruction is performed on
characteristic variables. It is conceivable to expect that the same thing will happen
with the new reconstruction proposed in this paper. This will be explored in some
future work.
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Fig. 4.5. Numerical and analytical solutions of Euler equations for Problems 5 and 6 at time
T = 0.16, with our RK-NCE-central scheme, considering a grid with NX = 200. We have considered
that Δt = 0.1Δx in the Sod problem and Δt = 0.09Δx in the Lax problem.

5. Conclusions. This paper presents a new fourth-order nonoscillatory recon-
struction procedure for upwind and central schemes that solves hyperbolic conserva-
tion laws in one spatial dimension, improving the accuracy of the schemes developed
in Liu and Osher [19] and Liu and Tadmor [20]. We have proved that our schemes are
number of extrema decreasing and this implies convergence along the lines of Liu and
Tadmor [20]. Numerical experiments have shown that our schemes are fourth-order
accurate, conservative, and nonoscillatory, presenting good behavior without the need
of satisfying the local maximum principle described in Liu and Osher [19]. Future re-
search will extend these schemes to several spatial variables. We also may study the
linear stability of these schemes by a procedure similar to that developed in Bianco,
Puppo, and Russo [3].
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